Effects of F⁴-corrections on String Inflation

Pellegrino Piantadosi

University of Bologna Dipartimento di Fisica e Astronomia

Presentation for the 21st String Phenomenology conference Liverpool | 4-8 July 2022

Based on a work in progress in collaboration with: M. Cicoli, M. Licheri, F. Quevedo, P. Shukla

LARGE Volume Scenario

- String Inflation phenomenology compactification of the extradimensions
- 10d Type IIB Superstring theory: Calabi Yau 3-folds
- CY Moduli: axio-dilaton S, complex structure moduli U_{α} , Kahler moduli T_i
- CY compactifications with superpotential W₀ (S, U)

$$D_{\alpha}W_0 = 0 = D_{\overline{\alpha}}\overline{W}_0$$
, and $D_SW_0 = 0 = D_{\overline{S}}\overline{W}_0$
 $W = W_0 + \sum_{i=1}^n A_i e^{-ia_i T_i}$

• LVS model for Kahler moduli stabilization $T_i = au_i + i heta_i$

$$\tau_i = \frac{1}{2} \int_{\Sigma_i} J \wedge J = \frac{1}{2} \kappa_{ijs} t^i t^s \qquad \qquad \mathcal{V} = \frac{1}{6} \int_X J \wedge J \wedge J = \frac{1}{6} \kappa_{ijs} t^i t^j t^s$$

LARGE Volume Scenario

Type IIB superstring theory scalar potential

$$V_F = e^K \left(K^{i\bar{\jmath}}(D_i W)(\overline{D}_{\bar{\jmath}} \overline{W}) - 3|W|^2 \right)$$

Higher derivative F4-corrections [D. Ciupke, J. Louis and A. Westphal]

$$V_{F^4} = -\left(\frac{g_s}{8\pi}\right)^2 \frac{\lambda W_0^4}{g_s^{3/2} \mathcal{V}^4} \sum_{i=1}^{h^{1,1}} \Pi_i t^i = \frac{\gamma}{\mathcal{V}^4} \sum_{i=1}^{h^{1,1}} \Pi_i t^i$$

with topological numbers

$$\Pi_i = \int_X c_2(X) \wedge \hat{D}_i$$

• Need to identify suitable CYs to describe phenomenology [Kreuzer-Skarke database]

								<i>[</i>
$h^{1,1}$	Poly*	Geom*	$n_{ddP} = 1$	$n_{ddP} = 2$	$n_{ddP} = 3$	$n_{ddP} = 4$	$n_{\rm LVS}$	
		(n_{CY})						J_{X_3}
1	5	5	0	0	0	0	0	ſ
2	36	39	22	0	0	0	22	
3	243	305	93	39	0	0	132	J_{X_3}
4	1185	2000	465	261	24	0	750	
5	4897	13494	3128	857	106	13	4104	k_{sss}

$$\int_{X_3} D_s^3 = k_{sss} > 0,$$

$$\int_{X_3} D_s^2 D_i \le 0$$

$$\forall i \ne s$$

$$k_{sss} k_{sij} = k_{ssi} k_{ssj}$$

String Inflation in LVS

- Fix the CY overall volume \mathcal{V}
- Search for the expression of the inflationary potential V
- Obtain, by derivation of *V*, the slow-roll parameters: $\epsilon = \frac{1}{2} \left(\frac{V'}{V} \right)^2$ $\eta = \frac{V''}{V}$
- Fix the numer of e-foldings according to the string model

$$N_e(\phi_{\star}) = \int_{\phi_{end}}^{\phi_{\star}} \frac{d\phi}{\sqrt{2\epsilon(\phi)}}$$

- Compute, by integration, the value of the inflaton field at the horizon exit
- Estimate the values of phenomenological interest parameters and compare them with observations

CY volume standard form

$$\mathcal{V} = \tau_b - \beta_1 \tau_1 - \beta_2 \tau_2$$

LVS potential approximation

$$V_{\text{LVS}} = \sum_{i=1}^{2} \left(\frac{8(a_i A_i)^2 \sqrt{\tau_i}}{3 \mathcal{V} \beta_i} e^{-2a_i \tau_i} - \frac{4a_i A_i W_0 \tau_i}{\mathcal{V}^2} e^{-a_i \tau_i} \right) + \frac{3\hat{\xi} W_0^2}{4 \mathcal{V}^3}$$

• High derivative F⁴-corrections

$$V_{F^4} = \frac{\gamma}{\mathcal{V}^4} \left[\Pi_b \left(\mathcal{V} - \sum_{i=1}^2 \beta_i \tau_i^{3/2} \right)^{1/3} - 3 \sum_{i=1}^2 \Pi_i \beta_i \sqrt{\tau_i} \right]$$

$h^{1,1}$	Poly*	Geom*	$n_{ddP} = 1$	$n_{ddP} = 2$	$n_{ddP} = 3$	$n_{ddP} = 4$	$n_{ m LVS}$	Blowup
		(n_{CY})						infln.
1	5	5	0	0	0	0	0	0
2	36	39	22	0	0	0	22	0
3	243	305	93	39	0	0	132	39
4	1185	2000	465	261	24	0	750	285
5	4897	13494	3128	857	106	13	4104	976

Number of e-foldings:

The number of e-foldings for inflation depends on the early history of universe evolution and, in particular, on the decay of the longest living particle.

- 1). If the inflaton is the longest living particle:
 - Decay in the visible sector

$$\Gamma_{\tau_2} = \frac{1}{\mathcal{V}} \frac{m_{\tau_2}^3}{M_P^2} \sim \frac{M_P}{\mathcal{V}^4}$$

$$N_e = 57 + \frac{1}{4} \ln r - \frac{1}{4} N_{\tau_2} = 50 - \frac{5}{12} \ln \mathcal{V}$$

- 2). If the volume is the longest living particle:
 - Decay in the visible sector
 - Decay into Higgs [Hebecker]

$$\Gamma_{\tau_B} \sim c_{\text{loop}}^2 \left(\frac{m_{3/2}}{m_{\tau_B}}\right)^4 \frac{m_{\tau_B}^3}{M_P^2} \sim c_{\text{loop}}^2 \frac{M_P}{\mathcal{V}^{5/2}} \longrightarrow N_e = 50 - \frac{1}{6} \ln \mathcal{V}$$

• Explicit example with parameter choice

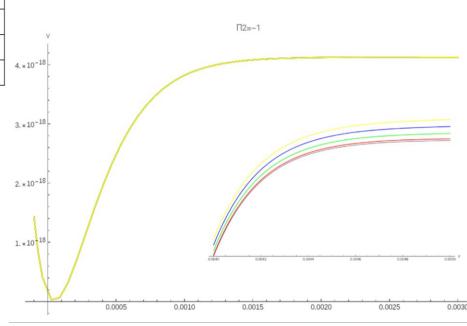
W_0	g_s	a_1	a_2	A_1	A_2	eta_1	β_2
0.1	0.13	2π	2π	0.2	3.4×10^{-7}	0.4725	0.01

• Divisor topology with $\Pi_1=\Pi_b=0$

$ \lambda $	ϕ_{\star}	n_s	A_s
0	4.494899×10^{-3}	0.956386	2.11146×10^{-9}
1.0×10^{-4}	4.95668×10^{-3}	0.958164	1.94664×10^{-9}
4.0×10^{-4}	4.98039×10^{-3}	0.963219	1.53505×10^{-9}
8.0×10^{-4}	5.01349×10^{-3}	0.969316	1.13485×10^{-9}
1.2×10^{-3}	5.04829×10^{-3}	0.974691	8.53024×10^{-10}

$$n_s = 0.9649 \pm 0.0042$$
 (68% CL)

$$|\lambda|_{max} = 1.1 \times 10^{-3}$$



Explicit example with parameter choice

W_0	g_s	a_1	a_2	A_1	A_2	β_1	β_2
0.1	0.13	2π	$2\pi/N$	0.19	3.4×10^{-7}	$\simeq 0.5$	0.01

• Divisor topology with $\Pi_1=\Pi_b=0$

N	$ \lambda $	ϕ_{\star}	n_s	A_s
	0	8.55743×10^{-3}	0.957692	2.20009×10^{-9}
	1.0×10^{-3}	8.59968×10^{-3}	0.962656	1.73612×10^{-9}
N=2	2.0×10^{-3}	8.64364×10^{-3}	0.967233	1.38248×10^{-9}
	3.0×10^{-3}	8.68932×10^{-3}	0.971425	1.11088×10^{-9}
	4.0×10^{-3}	8.73669×10^{-3}	0.975239	9.00672×10^{-10}
	0	1.22049×10^{-2}	0.957679	2.28554×10^{-9}
	2.0×10^{-3}	1.22649×10^{-2}	0.96252	1.81483×10^{-9}
N = 3	4.0×10^{-3}	1.23273×10^{-2}	0.966995	1.45345×10^{-9}
	6.0×10^{-2}	1.23921×10^{-2}	0.971106	1.174×10^{-9}
	8.0×10^{-3}	1.24593×10^{-2}	0.97486	9.56344×10^{-10}
	0	1.78617×10^{-2}	0.957678	2.14345×10^{-9}
	5.0×10^{-3}	1.7953×10^{-2}	0.962446	1.70842×10^{-9}
N=5	1.0×10^{-2}	1.80479×10^{-2}	0.966862	1.37293×10^{-9}
	1.5×10^{-2}	1.81464×10^{-3}	0.970927	1.11241×10^{-9}
	2.0×10^{-2}	1.82484×10^{-2}	0.974647	9.08706×10^{-10}

	1 - 2	1 - 0	N=5
$ \lambda _{max}$	3.48×10^{-3}	7.15×10^{-3}	1.82×10^{-2}

Fiber Inflation

CY volume standard form

$$\mathcal{V} = \frac{1}{6} \left(k_{111} (t^1)^3 + 3k_{233} t^2 (t^3)^2 \right) = \alpha \left(\tau_3 \sqrt{\tau_2} - \tau_1^{3/2} \right)$$

LVS potential approximation

$$V(\mathcal{V}, \tau_1) = a_1^2 A_1^2 \frac{\sqrt{\tau_1}}{\mathcal{V}} e^{-2a_1 \tau_1} - a_1 A_1 W_0 \frac{\tau_1}{\mathcal{V}} e^{-a_1 \tau_1} + \frac{\xi W_0^2}{g_s^{3/2} \mathcal{V}^3}$$

Inflationary potential + F⁴-corrections

$$V_{inf}(\hat{\phi}) = V_0 \left[e^{-4\hat{\phi}/\sqrt{3}} - 4e^{-\hat{\phi}/\sqrt{3}} + 3 + R(e^{2\hat{\phi}/\sqrt{3}} - 1) - R_1 e^{\hat{\phi}/\sqrt{3}} - R_2 e^{-2\hat{\phi}/\sqrt{3}} \right]$$

$h^{1,1}$	Poly*	Geom*	$n_{ m LVS}$	K3 fibred	n_{LVS} with $K3$ -fib.	$n_{\rm LVS}$ with
		(n_{CY})		CY	(Fibre inflation)	$K3$ -fib. & D_{Π}
1	5	5	0	0	0	0
2	36	39	22	10	0	0
3	243	305	132	136	43	0
4	1185	2000	750	865	171	32
5	4897	13494	4104	5970	951	161 + 37

Fiber Inflation

Explicit example with a parameter choice such that [M. Cicoli, E. Di Valentino]

$$R = 4.8 \times 10^{-6}$$

$$R_1 = 8.8 \times 10^{-3} \lambda \Pi_1$$

$$R_2$$
=1.8 × 10⁻¹ $\lambda\Pi_2$

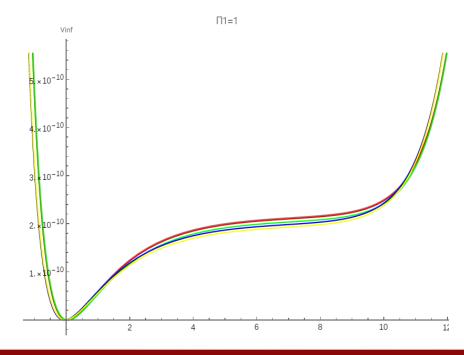
• Divisor topology with $\Pi_2 = 24$

$$\frac{\Gamma_{\phi \to hh}}{\Gamma_{\phi \to \gamma\gamma}} \sim \frac{c_{loop}^2}{\mathcal{V}^{2/3}} \left(\frac{\mathcal{V}^{5/3}}{\mathcal{V}}\right)^4 = (c_{loop}\mathcal{V})^2 \gg 1$$

$ \lambda $	ϕ_{\star}	n_s	A_s
0	5.91328	0.97049	2.13082×10^{-9}
0.1×10^{-3}	5.93005	0.970657	2.09702×10^{-9}
0.4×10^{-3}	5.98203	0.971207	1.99576×10^{-9}
0.7×10^{-3}	5.88793	0.97178	1.90293×10^{-9}
1.0×10^{-3}	5.93552	0.972399	1.81416×10^{-9}

$$n_s = 0.9696^{+0.0010}_{-0.0026}$$

$$|\lambda|_{max} = 6.1 \times 10^{-4}$$



Conclusions and Outlooks

- Not all the possible CY topologies support LVS
- High derivative corrections to the scalar potential affect the inflation dynamics
- There is an upper bound on the correction factors in order to preserve the correct inflation
- In some situations corrections are desirable
- Study other string-built models for inflations
- Analyze the effects of such corrections on other cosmological problems